Search results
Results from the WOW.Com Content Network
An important example of a log-concave density is a function constant inside a given convex body and vanishing outside; it corresponds to the uniform distribution on the convex body, which explains the term "central limit theorem for convex bodies".
By the classical central limit theorem the properly normed sum of a set of random variables, each with finite variance, will tend toward a normal distribution as the number of variables increases. Without the finite variance assumption, the limit may be a stable distribution that is not normal.
This is justified by considering the central limit theorem in the log domain (sometimes called Gibrat's law). The log-normal distribution is the maximum entropy probability distribution for a random variate X —for which the mean and variance of ln( X ) are specified.
The formula in the definition of characteristic function allows us to compute φ when we know the distribution function F (or density f). If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used.
The central limit theorem also implies that certain distributions can be approximated by the normal distribution, for example: The binomial distribution B ( n , p ) {\textstyle B(n,p)} is approximately normal with mean n p {\textstyle np} and variance n p ( 1 − p ) {\textstyle np(1-p)} for large n {\textstyle n} and for p {\textstyle p} not ...
This section illustrates the central limit theorem via an example for which the computation can be done quickly by hand on paper, unlike the more computing-intensive example of the previous section. Sum of all permutations of length 1 selected from the set of integers 1, 2, 3
In probability theory, Lindeberg's condition is a sufficient condition (and under certain conditions also a necessary condition) for the central limit theorem (CLT) to hold for a sequence of independent random variables.
This page was last edited on 1 December 2024, at 08:30 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.