Search results
Results from the WOW.Com Content Network
Calculus Made Easy ignores the use of limits with its epsilon-delta definition, replacing it with a method of approximating (to arbitrary precision) directly to the correct answer in the infinitesimal spirit of Leibniz, now formally justified in modern nonstandard analysis and smooth infinitesimal analysis.
Thomas' algorithm is not stable in general, but is so in several special cases, such as when the matrix is diagonally dominant (either by rows or columns) or symmetric positive definite; [1] [2] for a more precise characterization of stability of Thomas' algorithm, see Higham Theorem 9.12. [3]
In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, [1] introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of ...
13. Impossibility of the solution of the general equation of 7th degree by means of functions of only two arguments. 14. Proof of the finiteness of certain complete systems of functions. 15. Rigorous foundation of Schubert's enumerative calculus. 16. Problem of the topology of algebraic curves and surfaces. 17. Expression of definite forms by ...
Apostol was born on August 20, 1923, in Helper, Utah.His parents, Emmanouil Apostolopoulos and Efrosini Papathanasopoulos, were Greek immigrants. [3] Apostolopoulos's name was shortened to Mike Apostol when he obtained his United States citizenship, and Tom Apostol inherited this Americanized surname.
In mathematics, specifically in the calculus of variations, a variation δf of a function f can be concentrated on an arbitrarily small interval, but not a single point. . Accordingly, the necessary condition of extremum (functional derivative equal zero) appears in a weak formulation (variational form) integrated with an arbitrary function
When the number of independent variables is zero (i.e. the equations are all algebraic) secondary calculus reduces to classical differential calculus. All objects in secondary calculus are cohomology classes of differential complexes growing on diffieties. The latter are, in the framework of secondary calculus, the analog of smooth manifolds.
Stochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. This field was created and started by the Japanese mathematician Kiyosi Itô during World War II.