Search results
Results from the WOW.Com Content Network
In control theory, the RMSE is used as a quality measure to evaluate the performance of a state observer. [ 10 ] In fluid dynamics , normalized root mean square deviation (NRMSD), coefficient of variation (CV), and percent RMS are used to quantify the uniformity of flow behavior such as velocity profile, temperature distribution, or gas species ...
In bioinformatics, the root mean square deviation of atomic positions, or simply root mean square deviation (RMSD), is the measure of the average distance between the atoms (usually the backbone atoms) of superimposed molecules. [1]
and the RMS for a function over all time is = [()]. The RMS over all time of a periodic function is equal to the RMS of one period of the function. The RMS value of a continuous function or signal can be approximated by taking the RMS of a sample consisting of equally spaced observations.
Standard method like Gauss elimination can be used to solve the matrix equation for .A more numerically stable method is provided by QR decomposition method. Since the matrix is a symmetric positive definite matrix, can be solved twice as fast with the Cholesky decomposition, while for large sparse systems conjugate gradient method is more effective.
The MSE could be a function of unknown parameters, in which case any estimator of the MSE based on estimates of these parameters would be a function of the data (and thus a random variable). If the estimator θ ^ {\displaystyle {\hat {\theta }}} is derived as a sample statistic and is used to estimate some population parameter, then the ...
RStudio IDE (or RStudio) is an integrated development environment for R, a programming language for statistical computing and graphics. It is available in two formats: RStudio Desktop is a regular desktop application while RStudio Server runs on a remote server and allows accessing RStudio using a web browser.
For color images with three RGB values per pixel, the definition of PSNR is the same except that the MSE is the sum over all squared value differences (now for each color, i.e. three times as many differences as in a monochrome image) divided by image size and by three.
In order to evaluate the image quality, this formula is usually applied only on luma, although it may also be applied on color (e.g., RGB) values or chromatic (e.g. YCbCr) values. The resultant SSIM index is a decimal value between -1 and 1, where 1 indicates perfect similarity, 0 indicates no similarity, and -1 indicates perfect anti-correlation.