enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Longest common substring - Wikipedia

    en.wikipedia.org/wiki/Longest_common_substring

    The longest common substrings of a set of strings can be found by building a generalized suffix tree for the strings, and then finding the deepest internal nodes which have leaf nodes from all the strings in the subtree below it. The figure on the right is the suffix tree for the strings "ABAB", "BABA" and "ABBA", padded with unique string ...

  3. Ternary search - Wikipedia

    en.wikipedia.org/wiki/Ternary_search

    def ternary_search (f, left, right, absolute_precision)-> float: """Find maximum of unimodal function f() within [left, right]. To find the minimum, reverse the if/else statement or reverse the comparison. """ while abs (right-left) >= absolute_precision: left_third = left + (right-left) / 3 right_third = right-(right-left) / 3 if f (left_third) < f (right_third): left = left_third else: right ...

  4. Edit distance - Wikipedia

    en.wikipedia.org/wiki/Edit_distance

    Given two strings a and b on an alphabet Σ (e.g. the set of ASCII characters, the set of bytes [0..255], etc.), the edit distance d(a, b) is the minimum-weight series of edit operations that transforms a into b. One of the simplest sets of edit operations is that defined by Levenshtein in 1966: [2] Insertion of a single symbol.

  5. Hamming distance - Wikipedia

    en.wikipedia.org/wiki/Hamming_distance

    In information theory, the Hamming distance between two strings or vectors of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or equivalently, the minimum number of errors that could have transformed one string into the other.

  6. String metric - Wikipedia

    en.wikipedia.org/wiki/String_metric

    The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance). [2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another.

  7. Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Levenshtein_distance

    In information theory, linguistics, and computer science, the Levenshtein distance is a string metric for measuring the difference between two sequences. The Levenshtein distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) required to change one word into the other.

  8. Damerau–Levenshtein distance - Wikipedia

    en.wikipedia.org/wiki/Damerau–Levenshtein_distance

    Informally, the Damerau–Levenshtein distance between two words is the minimum number of operations (consisting of insertions, deletions or substitutions of a single character, or transposition of two adjacent characters) required to change one word into the other.

  9. Range minimum query - Wikipedia

    en.wikipedia.org/wiki/Range_minimum_query

    Range minimum query reduced to the lowest common ancestor problem. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l … r].