enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wave equation - Wikipedia

    en.wikipedia.org/wiki/Wave_equation

    The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.

  3. List of equations in wave theory - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_wave...

    The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.

  4. Wavelength - Wikipedia

    en.wikipedia.org/wiki/Wavelength

    A wave packet has an envelope that describes the overall amplitude of the wave; within the envelope, the distance between adjacent peaks or troughs is sometimes called a local wavelength. [21] [22] An example is shown in the figure. In general, the envelope of the wave packet moves at a speed different from the constituent waves. [23]

  5. String vibration - Wikipedia

    en.wikipedia.org/wiki/String_vibration

    The speed of propagation of a wave is equal to the wavelength divided by the period, or multiplied by the frequency: v = λ τ = λ f . {\displaystyle v={\frac {\lambda }{\tau }}=\lambda f.} If the length of the string is L {\displaystyle L} , the fundamental harmonic is the one produced by the vibration whose nodes are the two ends of the ...

  6. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    Dispersion occurs when sinusoidal waves of different wavelengths have different propagation velocities, so that a wave packet of mixed wavelengths tends to spread out in space. The speed of a plane wave, , is a function of the wave's wavelength : = ().

  7. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

  8. Wave vector - Wikipedia

    en.wikipedia.org/wiki/Wave_vector

    In physics, a wave vector (or wavevector) is a vector used in describing a wave, with a typical unit being cycle per metre.It has a magnitude and direction.Its magnitude is the wavenumber of the wave (inversely proportional to the wavelength), and its direction is perpendicular to the wavefront.

  9. Intensity (physics) - Wikipedia

    en.wikipedia.org/wiki/Intensity_(physics)

    For a monochromatic propagating electromagnetic wave, such as a plane wave or a Gaussian beam, if E is the complex amplitude of the electric field, then the time-averaged energy density of the wave, travelling in a non-magnetic material, is given by: = | |, and the local intensity is obtained by multiplying this expression by the wave velocity