enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. SMA* - Wikipedia

    en.wikipedia.org/wiki/SMA*

    SMA* or Simplified Memory Bounded A* is a shortest path algorithm based on the A* algorithm. The main advantage of SMA* is that it uses a bounded memory, while the A* algorithm might need exponential memory. All other characteristics of SMA* are inherited from A*.

  3. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    Dijkstra's algorithm, as another example of a uniform-cost search algorithm, can be viewed as a special case of A* where ⁠ = ⁠ for all x. [ 12 ] [ 13 ] General depth-first search can be implemented using A* by considering that there is a global counter C initialized with a very large value.

  4. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    a depth-first search starting at A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously-visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G. The edges traversed in this search form a Trémaux ...

  5. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph.

  6. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    a depth-first search starting at the node A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G. The edges traversed in this search form a ...

  7. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...

  8. Memory-bound function - Wikipedia

    en.wikipedia.org/wiki/Memory-bound_function

    Memory bound refers to a situation in which the time to complete a given computational problem is decided primarily by the amount of free memory required to hold the working data. This is in contrast to algorithms that are compute-bound , where the number of elementary computation steps is the deciding factor.

  9. Spreading activation - Wikipedia

    en.wikipedia.org/wiki/Spreading_activation

    Spreading activation is a method for searching associative networks, biological and artificial neural networks, or semantic networks. [1] The search process is initiated by labeling a set of source nodes (e.g. concepts in a semantic network) with weights or "activation" and then iteratively propagating or "spreading" that activation out to other nodes linked to the source nodes.