Search results
Results from the WOW.Com Content Network
In other words, it is the extent to which the results of a study can generalize or transport to other situations, people, stimuli, and times. [2] [3] Generalizability refers to the applicability of a predefined sample to a broader population while transportability refers to the applicability of one sample to another target population. [2]
Generalizability theory acknowledges and allows for variability in assessment conditions that may affect measurements. The advantage of G theory lies in the fact that researchers can estimate what proportion of the total variance in the results is due to the individual factors that often vary in assessment, such as setting, time, items, and raters.
In other words, the relevance of external and internal validity to a research study depends on the goals of the study. Furthermore, conflating research goals with validity concerns can lead to the mutual-internal-validity problem, where theories are able to explain only phenomena in artificial laboratory settings but not the real world.
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
Paul Meehl states that, "The best construct is the one around which we can build the greatest number of inferences, in the most direct fashion." [1] Scale purification, i.e. "the process of eliminating items from multi-item scales" (Wieland et al., 2017) can influence construct validity.
Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...
Replication in statistics evaluates the consistency of experiment results across different trials to ensure external validity, while repetition measures precision and internal consistency within the same or similar experiments. [5] Replicates Example: Testing a new drug's effect on blood pressure in separate groups on different days.
One way to check for bias in results after is rerunning analyses with different independent variables to observe whether a given phenomenon still occurs in dependent variables. [17] Careful use of language in reporting can reduce misleading phrases, such as discussion of a result "approaching" statistical significant as compared to actually ...