enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    A vector of arbitrary length can be divided by its length to create a unit vector. [14] This is known as normalizing a vector. A unit vector is often indicated with a hat as in â. To normalize a vector a = (a 1, a 2, a 3), scale the vector by the reciprocal of its length ‖a‖. That is:

  3. Scaling (geometry) - Wikipedia

    en.wikipedia.org/wiki/Scaling_(geometry)

    Each iteration of the Sierpinski triangle contains triangles related to the next iteration by a scale factor of 1/2. In affine geometry, uniform scaling (or isotropic scaling [1]) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions (isotropically).

  4. Unit vector - Wikipedia

    en.wikipedia.org/wiki/Unit_vector

    A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in ^ (pronounced "v-hat"). The normalized vector û of a non-zero vector u is the unit vector in the direction of u, i.e., ^ = ‖ ‖ where ‖u‖ is the norm (or length) of u. [1] [2] The term normalized vector is sometimes used as a synonym for unit vector.

  5. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    If the 4th component of the vector is 0 instead of 1, then only the vector's direction is reflected and its magnitude remains unchanged, as if it were mirrored through a parallel plane that passes through the origin. This is a useful property as it allows the transformation of both positional vectors and normal vectors with the same matrix.

  6. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    For any smooth function f on a Riemannian manifold (M, g), the gradient of f is the vector field ∇f such that for any vector field X, (,) =, that is, ((),) = (), where g x ( , ) denotes the inner product of tangent vectors at x defined by the metric g and ∂ X f is the function that takes any point x ∈ M to the directional derivative of f ...

  7. Vector (mathematics and physics) - Wikipedia

    en.wikipedia.org/wiki/Vector_(mathematics_and...

    In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [9] [10] It is typically formulated as the product of a unit of measurement and a vector numerical value (), often a Euclidean vector with magnitude and direction.

  8. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    The local (non-unit) basis vector is b 1 (notated h 1 above, with b reserved for unit vectors) and it is built on the q 1 axis which is a tangent to that coordinate line at the point P. The axis q 1 and thus the vector b 1 form an angle with the Cartesian x axis and the Cartesian basis vector e 1. It can be seen from triangle PAB that

  9. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...