Search results
Results from the WOW.Com Content Network
This is called the complementary cumulative distribution function (ccdf) or simply the tail distribution or exceedance, and is defined as ¯ = (>) = (). This has applications in statistical hypothesis testing , for example, because the one-sided p-value is the probability of observing a test statistic at least as extreme as the one observed.
The Cauchy distribution, an example of a distribution which does not have an expected value or a variance. In physics it is usually called a Lorentzian profile, and is associated with many processes, including resonance energy distribution, impact and natural spectral line broadening and quadratic stark line broadening.
The function f is equal to the derivative of F almost everywhere, and it is called the probability density function of the distribution of X. In the Examples section: As an example, suppose X is uniformly distributed on the unit interval [0, 1]. Then the CDF of X is given by
Example: If X is a beta (α, β) random variable then (1 − X) is a beta (β, α) random variable. If X is a binomial (n, p) random variable then (n − X) is a binomial (n, 1 − p) random variable. If X has cumulative distribution function F X, then the inverse of the cumulative distribution F X (X) is a standard uniform (0,1) random variable
Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).
The probability density, cumulative distribution, and inverse cumulative distribution of any function of one or more independent or correlated normal variables can be computed with the numerical method of ray-tracing [41] (Matlab code). In the following sections we look at some special cases.
The α-level upper critical value of a probability distribution is the value exceeded with probability , that is, the value such that () =, where is the cumulative distribution function. There are standard notations for the upper critical values of some commonly used distributions in statistics:
A random sentence of given ... in terms of the cumulative distribution of ... generating functions have the same distribution. This provides, for example, ...