Search results
Results from the WOW.Com Content Network
The isopropenyl group has priority 1 (carbon atoms only), and for the two remaining carbon atoms, priority is decided with the carbon atoms two bonds removed from the stereocenter, one part of the keto group (O, O, C, priority number 2) and one part of an alkene (C, C, H, priority number 3).
Recall that a point can be considered a sterocenter with a minimum of three attachment points; stereocenters can be either sp 3 or sp 2 hybridized, as long as the interchanging any two different groups creates a new stereoisomer. This means that although all chirality centers are stereocenters, not every stereocenter is a chirality center.
The Cram's rule of asymmetric induction named after Donald J. Cram states In certain non-catalytic reactions that diastereomer will predominate, which could be formed by the approach of the entering group from the least hindered side when the rotational conformation of the C-C bond is such that the double bond is flanked by the two least bulky groups attached to the adjacent asymmetric center. [3]
The groups COOH, R, NH 2 and H (where R is the side-chain) are arranged around the chiral center carbon atom. With the hydrogen atom away from the viewer, if the arrangement of the CO→R→N groups around the carbon atom as center is counter-clockwise, then it is the L form. [14] If the arrangement is clockwise, it is the D form. As usual, if ...
Enantiotopic groups are identical and indistinguishable except in chiral environments. For instance, the CH 2 hydrogens in ethanol (CH 3 CH 2 OH) are normally enantiotopic, but can be made different (diastereotopic) if combined with a chiral center, for instance by conversion to an ester of a chiral carboxylic acid such as lactic acid, or if coordinated to a chiral metal center, or if ...
There are 230 space groups in three dimensions, given by a number index, and a full name in Hermann–Mauguin notation, and a short name (international short symbol). The long names are given with spaces for readability. The groups each have a point group of the unit cell.
In stereochemistry, an asymmetric carbon is a carbon atom that is bonded to four different types of atoms or groups of atoms. [1] [2] The four atoms and/or groups attached to the carbon atom can be arranged in space in two different ways that are mirror images of each other, and which lead to so-called left-handed and right-handed versions (stereoisomers) of the same molecule.
Hence, they occur when two or more stereoisomers of a compound have different configurations at one or more (but not all) of the equivalent (related) stereocenters and are not mirror images of each other. [2] When two diastereoisomers differ from each other at only one stereocenter, they are epimers. Each stereocenter gives rise to two ...