enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    The Hermitian Laplacian matrix is a key tool in this context, as it is used to analyze the spectra of mixed graphs. [4] The Hermitian-adjacency matrix of a mixed graph is another important concept, as it is a Hermitian matrix that plays a role in studying the energies of mixed graphs. [5]

  3. Hermitian adjoint - Wikipedia

    en.wikipedia.org/wiki/Hermitian_adjoint

    The adjoint may also be called the Hermitian conjugate or simply the Hermitian [1] after Charles Hermite. It is often denoted by A † in fields like physics, especially when used in conjunction with bra–ket notation in quantum mechanics.

  4. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose "adjoint" matrix should not be confused with the adjugate, ⁡ (), which is also sometimes called adjoint. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } with real entries reduces to the transpose of A {\displaystyle \mathbf {A} } , as the conjugate of a real number is the number itself.

  5. Unitary matrix - Wikipedia

    en.wikipedia.org/wiki/Unitary_matrix

    In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (⁠ † ⁠), so the equation above is written

  6. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    The adjoint M * of a complex matrix M is the transpose of the conjugate of M: M * = M T. A square matrix A is called normal if it commutes with its adjoint: A * A = AA *. It is called Hermitian if it is equal to its adjoint: A * = A. All Hermitian matrices are normal.

  7. Adjugate matrix - Wikipedia

    en.wikipedia.org/wiki/Adjugate_matrix

    In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.

  8. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    The matrix of the adjoint of a map is the transposed matrix only if the bases are orthonormal with respect to their bilinear forms. In this context, many authors however, use the term transpose to refer to the adjoint as defined here. The adjoint allows us to consider whether g : Y → X is equal to u −1 : Y → X.

  9. Involutory matrix - Wikipedia

    en.wikipedia.org/wiki/Involutory_matrix

    In mathematics, an involutory matrix is a square matrix that is its own inverse. That is, ... and Hermitian adjoint (Hermitian and skew-Hermitian matrices). ...