enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hermitian adjoint - Wikipedia

    en.wikipedia.org/wiki/Hermitian_adjoint

    In finite dimensions where operators can be represented by matrices, the Hermitian adjoint is given by the conjugate transpose (also known as the Hermitian transpose). The above definition of an adjoint operator extends verbatim to bounded linear operators on Hilbert spaces. The definition has been further extended to include unbounded densely ...

  3. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose "adjoint" matrix should not be confused with the adjugate, ⁡ (), which is also sometimes called adjoint. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } with real entries reduces to the transpose of A {\displaystyle \mathbf {A} } , as the conjugate of a real number is the number itself.

  4. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    The Hermitian Laplacian matrix is a key tool in this context, as it is used to analyze the spectra of mixed graphs. [4] The Hermitian-adjacency matrix of a mixed graph is another important concept, as it is a Hermitian matrix that plays a role in studying the energies of mixed graphs. [5]

  5. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    Then F*P(D)F is essentially self-adjoint and its unique self-adjoint extension is the operator of multiplication by the function P. More generally, consider linear differential operators acting on infinitely differentiable complex-valued functions of compact support.

  6. Hermitian function - Wikipedia

    en.wikipedia.org/wiki/Hermitian_function

    From this definition it follows immediately that: is a Hermitian function if and only if the real part of f {\displaystyle f} is an even function , the imaginary part of f {\displaystyle f} is an odd function .

  7. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its Hermitian adjoint N*, that is: NN* = N*N. [1] Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood.

  8. Unitary matrix - Wikipedia

    en.wikipedia.org/wiki/Unitary_matrix

    In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (⁠ † ⁠), so the equation above is written

  9. Adjoint - Wikipedia

    en.wikipedia.org/wiki/Adjoint

    Specifically, adjoint or adjunction may mean: Adjoint of a linear map, also called its transpose in case of matrices; Hermitian adjoint (adjoint of a linear operator) in functional analysis; Adjoint endomorphism of a Lie algebra; Adjoint representation of a Lie group; Adjoint functors in category theory; Adjunction (field theory)