Search results
Results from the WOW.Com Content Network
The binomial distribution is the basis for the binomial test of statistical significance. [1] The binomial distribution is frequently used to model the number of successes in a sample of size n drawn with replacement from a population of size N. If the sampling is carried out without replacement, the draws are not independent and so the ...
The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution. The multivariate t-distribution, a generalization of the Student's t-distribution. The negative multinomial distribution, a generalization of the negative binomial distribution.
Binomial distribution, for the number of "positive occurrences" (e.g. successes, yes votes, etc.) given a fixed total number of independent occurrences; Negative binomial distribution, for binomial-type observations but where the quantity of interest is the number of failures before a given number of successes occurs
If n and m are large compared to N, and p = m/N is not close to 0 or 1, then X approximately has a Binomial(n, p) distribution. X is a beta-binomial random variable with parameters (n, α, β). Let p = α/(α + β) and suppose α + β is large, then X approximately has a binomial(n, p) distribution. If X is a binomial (n, p) random variable and ...
Note that to do this we cannot simply double the one-tailed p-value unless the probability of the event is 1/2. This is because the binomial distribution becomes asymmetric as that probability deviates from 1/2. There are two methods to define the two-tailed p-value.
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...
The beta-binomial distribution is the binomial distribution in which the probability of success at each of n trials is not fixed but randomly drawn from a beta distribution. It is frequently used in Bayesian statistics , empirical Bayes methods and classical statistics to capture overdispersion in binomial type distributed data.
This can now be considered a binomial distribution with = trial, so a binary regression is a special case of a binomial regression. If these data are grouped (by adding counts), they are no longer binary data, but are count data for each group, and can still be modeled by a binomial regression; the individual binary outcomes are then referred ...