Search results
Results from the WOW.Com Content Network
The Littrow configuration is a special geometry in which the blaze angle is chosen such that diffraction angle and incidence angle are identical. [1] For a reflection grating , this means that the diffracted beam is back-reflected into the direction of the incident beam (blue beam in picture).
A blazed diffraction grating reflecting only the green portion of the spectrum from a room's fluorescent lighting. For a diffraction grating, the relationship between the grating spacing (i.e., the distance between adjacent grating grooves or slits), the angle of the wave (light) incidence to the grating, and the diffracted wave from the grating is known as the grating equation.
An echelle grating (from French échelle, meaning "ladder") is a type of diffraction grating characterised by a relatively low groove density, but a groove shape which is optimized for use at high incidence angles and therefore in high diffraction orders. Higher diffraction orders allow for increased dispersion (spacing) of spectral features at ...
Visulization of flux through differential area and solid angle. As always n ^ {\displaystyle \mathbf {\hat {n}} \,\!} is the unit normal to the incident surface A, d A = n ^ d A {\displaystyle \mathrm {d} \mathbf {A} =\mathbf {\hat {n}} \mathrm {d} A\,\!} , and e ^ ∠ {\displaystyle \mathbf {\hat {e}} _{\angle }\,\!} is a unit vector in the ...
Each data set contains diffraction, crystallographic and bibliographic data, as well as experimental, instrument and sampling conditions, and select physical properties in a common standardized format. The organization was founded in 1941 as the Joint Committee on Powder Diffraction Standards. In 1978, the current name was adopted to highlight ...
The free spectral range of a diffraction grating is the largest wavelength range for a given order that does not overlap the same range in an adjacent order. If the ( m + 1)-th order of λ {\displaystyle \lambda } and m -th order of ( λ + Δ λ ) {\displaystyle (\lambda +\Delta \lambda )} lie at the same angle, then
Spectroscopes are often used in astronomy and some branches of chemistry. Early spectroscopes were simply prisms with graduations marking wavelengths of light. Modern spectroscopes generally use a diffraction grating, a movable slit, and some kind of photodetector, all automated and controlled by a computer.
Since the spacing between atoms in crystals is about a hundred times larger, the electrons are diffracted on the crystal lattice, acting as a diffraction grating. Due to the diffraction, part of the electrons is scattered at particular angles (diffracted beams), while others pass through the sample without changing their direction (transmitted ...