Search results
Results from the WOW.Com Content Network
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
The force is proportional to the product of the two masses and inversely proportional to the square of the distance between them: [11] Diagram of two masses attracting one another = where F is the force between the masses; G is the Newtonian constant of gravitation (6.674 × 10 −11 m 3 ⋅kg −1 ⋅s −2);
Was one of the big three spreadsheets (the others being Lotus 123 and Excel). EasyOffice EasySpreadsheet – for MS Windows. No longer freeware, this suite aims to be more user friendly than competitors. Framework – for MS Windows. Historical office suite still available and supported. It includes a spreadsheet.
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
The standard gravitational parameter GM appears as above in Newton's law of universal gravitation, as well as in formulas for the deflection of light caused by gravitational lensing, in Kepler's laws of planetary motion, and in the formula for escape velocity. This quantity gives a convenient simplification of various gravity-related formulas.
For a spherical body of uniform density, the gravitational binding energy U is given in Newtonian gravity by the formula [2] [3] = where G is the gravitational constant, M is the mass of the sphere, and R is its radius.
The first term is the familiar law of universal gravitation; the second is an additional force, analogous to the cosmological constant term in general relativity. However, the inverse-square potential is the only potential such that the net force inside the shell is also zero. [2] The force described by the Yukawa potential
In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.