enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    The dimension of this vector space, if it exists, [a] is called the degree of the extension. For example, the complex numbers C form a two-dimensional vector space over the real numbers R. Likewise, the real numbers R form a vector space over the rational numbers Q which has (uncountably) infinite dimension, if a Hamel basis exists. [b]

  3. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.

  4. Frame (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Frame_(linear_algebra)

    In linear algebra, a frame of an inner product space is a generalization of a basis of a vector space to sets that may be linearly dependent. In the terminology of signal processing , a frame provides a redundant, stable way of representing a signal . [ 1 ]

  5. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...

  6. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    The components of a vector are often represented arranged in a column. By contrast, a covector has components that transform like the reference axes. It lives in the dual vector space, and represents a linear map from vectors to scalars. The dot product operator involving vectors is a good example of a covector.

  7. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...

  8. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    Examples: is a model for 3-dimensional space. The metric is equivalent to the standard dot product., =, equivalent to dimensional real space as an inner product space with =. In Euclidean space, raising and lowering is not necessary due to vectors and covector components being the same.

  9. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    The simplest example of a vector space over a field F is the field F itself with its addition viewed as vector addition and its multiplication viewed as scalar multiplication. More generally, all n -tuples (sequences of length n ) ( a 1 , a 2 , … , a n ) {\displaystyle (a_{1},a_{2},\dots ,a_{n})} of elements a i of F form a vector space that ...