enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bravais lattice - Wikipedia

    en.wikipedia.org/wiki/Bravais_lattice

    The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by

  3. Crystal system - Wikipedia

    en.wikipedia.org/wiki/Crystal_system

    A lattice system is a set of Bravais lattices (an infinite array of discrete points). Space groups (symmetry groups of a configuration in space) are classified into crystal systems according to their point groups, and into lattice systems according to their Bravais lattices.

  4. Pearson symbol - Wikipedia

    en.wikipedia.org/wiki/Pearson_symbol

    The letters A, B and C were formerly used instead of S. When the centred face cuts the X axis, the Bravais lattice is called A-centred. In analogy, when the centred face cuts the Y or Z axis, we have B- or C-centring respectively. [5] The fourteen possible Bravais lattices are identified by the first two letters:

  5. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    The fourteen three-dimensional lattices, classified by lattice system, are shown above. The crystal structure consists of the same group of atoms, the basis, positioned around each and every lattice point. This group of atoms therefore repeats indefinitely in three dimensions according to the arrangement of one of the Bravais lattices.

  6. Hexagonal crystal family - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_crystal_family

    In either case, there are 3 lattice points per unit cell in total and the lattice is non-primitive. The Bravais lattices in the hexagonal crystal family can also be described by rhombohedral axes. [4] The unit cell is a rhombohedron (which gives the name for the rhombohedral lattice). This is a unit cell with parameters a = b = c; α = β = γ ...

  7. List of planar symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_planar_symmetry_groups

    The 17 wallpaper groups, with finite fundamental domains, are given by International notation, orbifold notation, and Coxeter notation, classified by the 5 Bravais lattices in the plane: square, oblique (parallelogrammatic), hexagonal (equilateral triangular), rectangular (centered rhombic), and rhombic (centered rectangular).

  8. Space group - Wikipedia

    en.wikipedia.org/wiki/Space_group

    The translations form a normal abelian subgroup of rank 3, called the Bravais lattice (so named after French physicist Auguste Bravais). There are 14 possible types of Bravais lattice. The quotient of the space group by the Bravais lattice is a finite group which is one of the 32 possible point groups.

  9. Oblique lattice - Wikipedia

    en.wikipedia.org/wiki/Oblique_lattice

    The oblique lattice is one of the five two-dimensional Bravais lattice types. [1] The symmetry category of the lattice is wallpaper group p2. The primitive translation vectors of the oblique lattice form an angle other than 90° and are of unequal lengths.