Search results
Results from the WOW.Com Content Network
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
Weighted means are commonly used in statistics to compensate for the presence of bias.For a quantity measured multiple independent times with variance, the best estimate of the signal is obtained by averaging all the measurements with weight = /, and the resulting variance is smaller than each of the independent measurements = /.
Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.
The Marshall-Edgeworth index, credited to Marshall (1887) and Edgeworth (1925), [11] is a weighted relative of current period to base period sets of prices. This index uses the arithmetic average of the current and based period quantities for weighting. It is considered a pseudo-superlative formula and is symmetric. [12]
In weighted least squares, the definition is often written in matrix notation as =, where r is the vector of residuals, and W is the weight matrix, the inverse of the input (diagonal) covariance matrix of observations.
UPGMA (unweighted pair group method with arithmetic mean) is a simple agglomerative (bottom-up) hierarchical clustering method. It also has a weighted variant, WPGMA , and they are generally attributed to Sokal and Michener .
In normal unweighted samples, the N in the denominator (corresponding to the sample size) is changed to N − 1 (see Bessel's correction). In the weighted setting, there are actually two different unbiased estimators, one for the case of frequency weights and another for the case of reliability weights.
The method of mean weighted residuals solves (,,, …,) = by imposing that the degrees of freedom are such that: ((,,, …,),) =is satisfied. Where the inner product (,) is the standard function inner product with respect to some weighting function () which is determined usually by the basis function set or arbitrarily according to whichever weighting function is most convenient.