Search results
Results from the WOW.Com Content Network
Fish physiology is the scientific study of how the component parts of fish function together in the living fish. [2] It can be contrasted with fish anatomy , which is the study of the form or morphology of fishes.
Pages in category "Fish physiology" The following 6 pages are in this category, out of 6 total. This list may not reflect recent changes. ...
In practice, fish anatomy and fish physiology complement each other, the former dealing with the structure of a fish, its organs or component parts and how they are put together, such as might be observed on the dissecting table or under the microscope, and the latter dealing with how those components function together in living fish.
Steven J. Cooke is a Canadian biologist specializing in ecology and conservation physiology of fish. He is best known for his integrative work on fish physiology, behaviour, ecology, and human-dimensions to understand and solve complex environmental problems.
A fish's hypoxia tolerance can be represented in different ways. A commonly used representation is the critical O 2 tension (P crit), which is the lowest water O 2 tension (P O 2) at which a fish can maintain a stable O 2 consumption rate (M O 2). [2] A fish with a lower P crit is therefore thought to be more hypoxia-tolerant than a fish with a ...
Fish account for more than half of vertebrate species. As of 2016, there are over 32,000 described species of bony fish, over 1,100 species of cartilaginous fish, and over 100 hagfish and lampreys. A third of these fall within the nine largest families; from largest to smallest, these are Cyprinidae , Gobiidae , Cichlidae , Characidae ...
The swim bladder, gas bladder, fish maw, or air bladder is an internal gas-filled organ in bony fish (but not cartilaginous fish [1]) that functions to modulate buoyancy, and thus allowing the fish to stay at desired water depth without having to maintain lift via swimming, which expends more energy. [2]
These fish use their electric discharges for navigation, communication, mating, defence, and in strongly electric fish also for the incapacitation of prey. The electric organs of two strongly electric fish, the torpedo ray and the electric eel were first studied in the 1770s by John Walsh, Hugh Williamson, and John Hunter.