Search results
Results from the WOW.Com Content Network
X-13ARIMA-SEATS, successor to X-12-ARIMA and X-11, is a set of statistical methods for seasonal adjustment and other descriptive analysis of time series data that are implemented in the U.S. Census Bureau's software package. [3]
PV-WAVE – programming language comprehensive data analysis and visualization with IMSL statistical package; Qlucore Omics Explorer – interactive and visual data analysis software; RapidMiner – machine learning toolbox; Regression Analysis of Time Series (RATS) – comprehensive econometric analysis package; S-PLUS – general statistics ...
For many series, the period is known and a single seasonality term is sufficient. For example, for monthly data one would typically include either a seasonal AR 12 term or a seasonal MA 12 term. For Box–Jenkins models, one does not explicitly remove seasonality before fitting the model.
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.
In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and periodic variation, respectively.
The general ARMA model was described in the 1951 thesis of Peter Whittle, who used mathematical analysis (Laurent series and Fourier analysis) and statistical inference. [ 12 ] [ 13 ] ARMA models were popularized by a 1970 book by George E. P. Box and Jenkins, who expounded an iterative ( Box–Jenkins ) method for choosing and estimating them.
This is an important technique for all types of time series analysis, especially for seasonal adjustment. [2] It seeks to construct, from an observed time series, a number of component series (that could be used to reconstruct the original by additions or multiplications) where each of these has a certain characteristic or type of behavior.
In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.