enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    There are two types, points and lines, and one "incidence" relation between points and lines. The three axioms are: G1: Every line contains at least 3 points; G2: Every two distinct points, A and B, lie on a unique line, AB. G3: If lines AB and CD intersect, then so do lines AC and BD (where it is assumed that A and D are distinct from B and C).

  3. Fano plane - Wikipedia

    en.wikipedia.org/wiki/Fano_plane

    In finite geometry, the Fano plane (named after Gino Fano) is a finite projective plane with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in Euclidean geometry, but they can be given ...

  4. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    First we consider the intersection of two lines L 1 and L 2 in two-dimensional space, with line L 1 being defined by two distinct points (x 1, y 1) and (x 2, y 2), and line L 2 being defined by two distinct points (x 3, y 3) and (x 4, y 4). [2] The intersection P of line L 1 and L 2 can be defined using determinants.

  5. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    The two bimedians of a quadrilateral (segments joining midpoints of opposite sides) and the line segment joining the midpoints of the diagonals are concurrent and are all bisected by their point of intersection. [3]: p.125 In a tangential quadrilateral, the four angle bisectors concur at the center of the incircle. [4]

  6. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    Let l 1 = [a 1, b 1, c 1] and l 2 = [a 2, b 2, c 2] be a pair of distinct lines. Then the intersection of lines l 1 and l 2 is point a P = (x 0, y 0, z 0) that is the simultaneous solution (up to a scalar factor) of the system of linear equations: a 1 x + b 1 y + c 1 z = 0 and a 2 x + b 2 y + c 2 z = 0. The solution of this system gives: x 0 ...

  7. Projective space - Wikipedia

    en.wikipedia.org/wiki/Projective_space

    The image represents the projective line as a circle where antipodal points are identified, and shows the two homeomorphisms of a real line to the projective line; as antipodal points are identified, the image of each line is represented as an open half circle, which can be identified with the projective line with a single point removed.

  8. Duality (projective geometry) - Wikipedia

    en.wikipedia.org/wiki/Duality_(projective_geometry)

    That is, a plane duality σ will map points to lines and lines to points (P σ = L and L σ = P) in such a way that if a point Q is on a line m (denoted by Q I m) then Q I m ⇔ m σ I ∗ Q σ. A plane duality which is an isomorphism is called a correlation. [6] The existence of a correlation means that the projective plane C is self-dual.

  9. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    For example, two distinct lines can intersect in no more than one point, intersecting lines form equal opposite angles, and adjacent angles of intersecting lines are supplementary. When a third line is introduced, then there can be properties of intersecting lines that differ from intersecting lines in Euclidean geometry. For example, given two ...