enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational lensing formalism - Wikipedia

    en.wikipedia.org/wiki/Gravitational_lensing...

    While gravitational lensing preserves surface brightness, as dictated by Liouville's theorem, lensing does change the apparent solid angle of a source. The amount of magnification is given by the ratio of the image area to the source area. For a circularly symmetric lens, the magnification factor μ is given by

  3. Einstein radius - Wikipedia

    en.wikipedia.org/wiki/Einstein_radius

    For a source right behind the lens, θ S = 0, the lens equation for a point mass gives a characteristic value for θ 1 that is called the Einstein angle, denoted θ E. When θ E is expressed in radians, and the lensing source is sufficiently far away, the Einstein Radius, denoted R E, is given by =. [2]

  4. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    This is expressed by the equation of geodesic deviation and means that the tidal forces experienced in a gravitational field are a result of the curvature of spacetime. Using the above procedure, the Riemann tensor is defined as a type (1, 3) tensor and when fully written out explicitly contains the Christoffel symbols and their first partial ...

  5. Gravitational lens - Wikipedia

    en.wikipedia.org/wiki/Gravitational_lens

    The amount of gravitational lensing is described by Albert Einstein's general theory of relativity. [ 1 ] [ 2 ] If light is treated as corpuscles travelling at the speed of light , Newtonian physics also predicts the bending of light, but only half of that predicted by general relativity.

  6. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.

  7. Odd number theorem - Wikipedia

    en.wikipedia.org/wiki/Odd_number_theorem

    The odd number theorem is a theorem in strong gravitational lensing which comes directly from differential topology. The theorem states that the number of multiple images produced by a bounded transparent lens must be odd .

  8. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass.

  9. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    In 1907 Einstein came to the conclusion that to achieve this a successor to special relativity was needed. From 1907 to 1915, Einstein worked towards a new theory, using his equivalence principle as a key concept to guide his way. According to this principle, a uniform gravitational field acts equally on everything within it and, therefore ...