Search results
Results from the WOW.Com Content Network
George Brinton Thomas Jr. (January 11, 1914 – October 31, 2006) was an American mathematician and professor of mathematics at the Massachusetts Institute of Technology (MIT). Internationally, he is best known for being the author of the widely used calculus textbook Calculus and Analytic Geometry, known today as Thomas' Textbook.
The original text continues to be available as of 2008 from Macmillan and Co., but a 1998 update by Martin Gardner is available from St. Martin's Press which provides an introduction; three preliminary chapters explaining functions, limits, and derivatives; an appendix of recreational calculus problems; and notes for modern readers. [1]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Thomas G. Goodwillie (born 1954) is an American mathematician and professor at Brown University who has made fundamental contributions to algebraic and geometric topology. He is especially famous for developing the concept of calculus of functors , often also named Goodwillie calculus .
It is fundamentally the study of the relationship of variables that depend on each other. Calculus was expanded in the 18th century by Euler with the introduction of the concept of a function and many other results. [40] Presently, "calculus" refers mainly to the elementary part of this theory, and "analysis" is commonly used for advanced parts ...
In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, [1] introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of ...
Archimedes also discovers a method which is similar to differential calculus. [1] 3rd century BC - Archimedes develops a concept of the indivisibles—a precursor to infinitesimals—allowing him to solve several problems using methods now termed as integral calculus.
Predicate logic, originally called predicate calculus, expands on propositional logic by the introduction of variables, usually denoted by x, y, z, or other lowercase letters, and by sentences containing variables, called predicates. These are usually denoted by an uppercase letter followed by a list of variables, such as P(x) or Q(y,z).