enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.

  3. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But even with the greatest common divisor divided out, arithmetic with rational numbers can become unwieldy very quickly: 1/99 − 1/100 = 1/9900, and if 1/101 is then added, the result is 10001/999900. The size of arbitrary-precision numbers is limited in practice by the total storage available, and computation time.

  4. Complex data type - Wikipedia

    en.wikipedia.org/wiki/Complex_data_type

    The FORTRAN COMPLEX type. [1] The C99 standard of the C programming language includes complex data types and complex-math functions in the standard library header <complex.h>. The C++ standard library provides a complex template class as well as complex-math functions in the <complex> header.

  5. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    Note that C99 and C++ do not implement complex numbers in a code-compatible way – the latter instead provides the class std:: complex. All operations on complex numbers are defined in the <complex.h> header. As with the real-valued functions, an f or l suffix denotes the float complex or long double complex variant of the function.

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.

  7. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Example: the decimal number () = (¯) can be rearranged into + ⏟ … Since the 53rd bit to the right of the binary point is a 1 and is followed by other nonzero bits, the round-to-nearest rule requires rounding up, that is, add 1 bit to the 52nd bit.

  8. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  9. dc (computer program) - Wikipedia

    en.wikipedia.org/wiki/Dc_(computer_program)

    # F(x): return x! # if x-1 > 1 # return x * F(x-1) # otherwise # return x [d1-d1<F*]dsFxp The 1Q command exits from a macro, allowing an early return. q quits from two levels of macros (and dc itself if there are less than two levels on the call stack). z pushes the current stack depth before the z operation.