enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    Random Cycle Bit Generator (RCB) 2016 R. Cookman [35] RCB is described as a bit pattern generator made to overcome some of the shortcomings with Mersenne Twister and short periods/bit length restriction of shift/modulo generators. Middle-Square Weyl Sequence RNG (see also middle-square method) 2017 B. Widynski [36] [37]

  3. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...

  4. Middle-square method - Wikipedia

    en.wikipedia.org/wiki/Middle-square_method

    To generate a sequence of n-digit pseudorandom numbers, an n-digit starting value is created and squared, producing a 2n-digit number. If the result has fewer than 2n digits, leading zeroes are added to compensate. The middle n digits of the result would be the next number in the sequence and returned as the result. This process is then ...

  5. Pseudorandom binary sequence - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_binary_sequence

    For a maximum length sequence, where =, the duty cycle is 1/2. A PRBS is 'pseudorandom', because, although it is in fact deterministic, it seems to be random in a sense that the value of an a j {\displaystyle a_{j}} element is independent of the values of any of the other elements, similar to real random sequences.

  6. Mersenne Twister - Wikipedia

    en.wikipedia.org/wiki/Mersenne_Twister

    The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士). [1] [2] Its name derives from the choice of a Mersenne prime as its period length. The Mersenne Twister was designed specifically to rectify most of the flaws found in older PRNGs.

  7. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    Each row shows the state evolving until it repeats. The top row shows a generator with m = 9, a = 2, c = 0, and a seed of 1, which produces a cycle of length 6. The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8].

  8. Blum Blum Shub - Wikipedia

    en.wikipedia.org/wiki/Blum_Blum_Shub

    Blum Blum Shub takes the form + =, where M = pq is the product of two large primes p and q.At each step of the algorithm, some output is derived from x n+1; the output is commonly either the bit parity of x n+1 or one or more of the least significant bits of x n+1.

  9. Cryptographically secure pseudorandom number generator

    en.wikipedia.org/wiki/Cryptographically_secure...

    That is, given the first k bits of a random sequence, there is no polynomial-time algorithm that can predict the (k+1)th bit with probability of success non-negligibly better than 50%. [1] Andrew Yao proved in 1982 that a generator passing the next-bit test will pass all other polynomial-time statistical tests for randomness. [2]