enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    The Bode plot for a linear, time-invariant system with transfer function (being the complex frequency in the Laplace domain) consists of a magnitude plot and a phase plot. The Bode magnitude plot is the graph of the function | H ( s = j ω ) | {\displaystyle |H(s=j\omega )|} of frequency ω {\displaystyle \omega } (with j {\displaystyle j ...

  3. Bode's sensitivity integral - Wikipedia

    en.wikipedia.org/wiki/Bode's_sensitivity_integral

    Bode's sensitivity integral, discovered by Hendrik Wade Bode, is a formula that quantifies some of the limitations in feedback control of linear parameter invariant systems. Let L be the loop transfer function and S be the sensitivity function. In the diagram, P is a dynamical process that has a transfer function P(s).

  4. Butterworth filter - Wikipedia

    en.wikipedia.org/wiki/Butterworth_filter

    The function is defined by the three poles in the left half of the complex frequency plane. Log density plot of the transfer function () in complex frequency space for the third-order Butterworth filter with =1. The three poles lie on a circle of unit radius in the left half-plane.

  5. Roll-off - Wikipedia

    en.wikipedia.org/wiki/Roll-off

    This is a little over 6 dB/octave and is the more usual description given for this roll-off. This can be shown to be so by considering the voltage transfer function, A, of the RC network: [1] = = + Frequency scaling this to ω c = 1/RC = 1 and forming the power ratio gives,

  6. Cutoff frequency - Wikipedia

    en.wikipedia.org/wiki/Cutoff_frequency

    Magnitude transfer function of a bandpass filter with lower 3 dB cutoff frequency f 1 and upper 3 dB cutoff frequency f 2 Bode plot (a logarithmic frequency response plot) of any first-order low-pass filter with a normalized cutoff frequency at =1 and a unity gain (0 dB) passband.

  7. Root locus analysis - Wikipedia

    en.wikipedia.org/wiki/Root_locus_analysis

    The following MATLAB code will plot the root locus of the closed-loop transfer function as varies using the described manual method as well as the rlocus built-in function: % Manual method K_array = ( 0 : 0.1 : 220 ). ' ; % .' is a transpose.

  8. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The transfer function coefficients can also be used to construct another type of canonical form ˙ = [] + [] () = [] (). This state-space realization is called observable canonical form because the resulting model is guaranteed to be observable (i.e., because the output exits from a chain of integrators, every state has an effect on the output).

  9. Closed-loop transfer function - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_transfer_function

    The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below: