Search results
Results from the WOW.Com Content Network
Kinetic energy is the movement energy of an object. Kinetic energy can be transferred between objects and transformed into other kinds of energy. [10] Kinetic energy may be best understood by examples that demonstrate how it is transformed to and from other forms of energy.
The Fermi energy defines the energy of the highest energy electron at zero temperature. For metals the Fermi energy is in the order of units of electronvolts above the free electron band minimum energy. [2] In three dimensions, the density of states of a gas of fermions is proportional to the square root of the kinetic energy of the particles.
Thus, the ratio of the kinetic energy to the absolute temperature of an ideal monatomic gas can be calculated easily: per mole: 12.47 J/K; per molecule: 20.7 yJ/K = 129 μeV/K; At standard temperature (273.15 K), the kinetic energy can also be obtained: per mole: 3406 J; per molecule: 5.65 zJ = 35.2 meV.
Drude used the kinetic theory of gases applied to the gas of electrons moving on a fixed background of "ions"; this is in contrast with the usual way of applying the theory of gases as a neutral diluted gas with no background. The number density of the electron gas was assumed to be =, where Z is the effective number of de-localized electrons ...
Hence, all the energy possessed by the gas is the kinetic energy of the molecules, or atoms, of the gas. = This corresponds to the kinetic energy of n moles of a monoatomic gas having 3 degrees of freedom; x, y, z. The table here below gives this relationship for different amounts of a monoatomic gas.
The higher the energy density of the fuel, the more energy may be stored or transported for the same amount of volume. The energy of a fuel per unit mass is called its specific energy. The adjacent figure shows the gravimetric and volumetric energy density of some fuels and storage technologies (modified from the Gasoline article).
The kinetic theory of gases applies to the classical ideal gas, which is an idealization of real gases. In real gases, there are various effects (e.g., van der Waals interactions , vortical flow, relativistic speed limits, and quantum exchange interactions ) that can make their speed distribution different from the Maxwell–Boltzmann form.
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...