enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clock angle problem - Wikipedia

    en.wikipedia.org/wiki/Clock_angle_problem

    The angle is typically measured in degrees from the mark of number 12 clockwise. The time is usually based on a 12-hour clock. A method to solve such problems is to consider the rate of change of the angle in degrees per minute. The hour hand of a normal 12-hour analogue clock turns 360° in 12 hours (720 minutes) or 0.5° per minute.

  3. Right ascension - Wikipedia

    en.wikipedia.org/wiki/Right_ascension

    For example, if a star with RA = 1 h 30 m 00 s is at its meridian, then a star with RA = 20 h 00 m 00 s will be on the/at its meridian (at its apparent highest point) 18.5 sidereal hours later. Sidereal hour angle, used in celestial navigation , is similar to right ascension but increases westward rather than eastward.

  4. Clock position - Wikipedia

    en.wikipedia.org/wiki/Clock_position

    The second-order digit counted the degrees that had gone by in the hour, notwithstanding the fact that its number of degrees were seasonal. The third and last order digit divided the time-degree into 60 parts (the gar), which appears to be sexagesimal. In modern time it is 4 seconds. There are not 60 time-degrees in an hour, nor 60 hours in a day.

  5. Minute and second of arc - Wikipedia

    en.wikipedia.org/wiki/Minute_and_second_of_arc

    To adjust a 1 ⁄ 4 MOA scope 3 MOA down and 1.5 MOA right, the scope needs to be adjusted 3 x 4 = 12 clicks down and 1.5 × 4 = 6 clicks right; To adjust a 1 ⁄ 8 MOA scope 3 MOA down and 1.5 MOA right, the scope needs to be adjusted 3 x 8 = 24 clicks down and 1.5 × 8 = 12 clicks right; Comparison of minute of arc (MOA) and milliradian (mrad).

  6. Hour angle - Wikipedia

    en.wikipedia.org/wiki/Hour_angle

    At solar noon the hour angle is zero degrees, with the time before solar noon expressed as negative degrees, and the local time after solar noon expressed as positive degrees. For example, at 10:30 AM local apparent time the hour angle is −22.5° (15° per hour times 1.5 hours before noon). [4]

  7. Metric time - Wikipedia

    en.wikipedia.org/wiki/Metric_time

    1.67 minutes (or 1 minute 40 seconds) 10 3: kilosecond: 1 000: 16.7 minutes (or 16 minutes and 40 seconds) 10 6: megasecond: 1 000 000: 11.6 days (or 11 days, 13 hours, 46 minutes and 40 seconds) 10 9: gigasecond: 1 000 000 000: 31.7 years (or 31 years, 252 days, 1 hour, 46 minutes, 40 seconds, assuming that there are 7 leap years in the interval)

  8. Gradian - Wikipedia

    en.wikipedia.org/wiki/Gradian

    If one is sighting down a compass course of 117 gon, the direction to one's left is 17 gon, to one's right 217 gon, and behind one 317 gon. A disadvantage is that the common angles of 30° and 60° in geometry must be expressed in fractions (as ⁠33 + 1 / 3 ⁠ gon and ⁠66 + 2 / 3 ⁠ gon respectively).

  9. Decimal time - Wikipedia

    en.wikipedia.org/wiki/Decimal_time

    A Gregorian year, which takes into account the 100 vs. 400 leap year exception rule of the Gregorian calendar, is 365.2425 days (the average length of a year over a 400–year cycle), resulting in 0.1 years being a period of 36.52425 days (3 155 695.2 seconds; 36 days, 12 hours, 34 minutes, 55.2 seconds).