Search results
Results from the WOW.Com Content Network
¯ = sample mean of differences d 0 {\displaystyle d_{0}} = hypothesized population mean difference s d {\displaystyle s_{d}} = standard deviation of differences
A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6] The most common symbol for the input is x, and the most common symbol for the output is y; the function itself is commonly written y = f(x). [6] [7]
A contrast is defined as the sum of each group mean multiplied by a coefficient for each group (i.e., a signed number, c j). [10] In equation form, = ¯ + ¯ + + ¯ ¯, where L is the weighted sum of group means, the c j coefficients represent the assigned weights of the means (these must sum to 0 for orthogonal contrasts), and ¯ j represents the group means. [8]
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
Mean difference may refer to: Mean absolute difference, a measure of statistical dispersion; Mean signed difference, a measure of central tendency; See also
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
Stochastic independence implies mean independence, but the converse is not true.; [1] [2] moreover, mean independence implies uncorrelatedness while the converse is not true. Unlike stochastic independence and uncorrelatedness, mean independence is not symmetric: it is possible for Y {\displaystyle Y} to be mean-independent of X {\displaystyle ...
The mean absolute difference (univariate) is a measure of statistical dispersion equal to the average absolute difference of two independent values drawn from a probability distribution. A related statistic is the relative mean absolute difference , which is the mean absolute difference divided by the arithmetic mean , and equal to twice the ...