Search results
Results from the WOW.Com Content Network
Different models of 3D printing tissue and organs. Three dimensional (3D) bioprinting is the use of 3D printing–like techniques to combine cells, growth factors, bio-inks, and biomaterials to fabricate functional structures that were traditionally used for tissue engineering applications but in recent times have seen increased interest in other applications such as biosensing, and ...
Progress has been made in this area at Rice University, where researchers designed a 3D printer to make vessels in biocompatible hydrogels and designed a model of lungs that can oxygenate blood. [42] However, accompanied with this technique is the challenge of replicating the other minute details of organs. [42]
A hydrogel is a biphasic material, a mixture of porous and permeable solids and at least 10% of water or other interstitial fluid. [1] [2] The solid phase is a water insoluble three dimensional network of polymers, having absorbed a large amount of water or biological fluids.
Micro-mass cultures of C3H-10T1/2 cells at varied oxygen tensions stained with Alcian blue. A commonly applied definition of tissue engineering, as stated by Langer [3] and Vacanti, [4] is "an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve [Biological tissue] function or a ...
Polyvinyl alcohol (PVOH, PVA, or PVAl) is a water-soluble synthetic polymer.It has the idealized formula [CH 2 CH(OH)] n.It is used in papermaking, textile warp sizing, as a thickener and emulsion stabilizer in polyvinyl acetate (PVAc) adhesive formulations, in a variety of coatings, and 3D printing.
Specifically, hydrogels can be designed to release drugs or other agents in response to physical characteristics of the environment like temperature and pH. [12] The responsiveness of hydrogels is a result of their molecular structure and polymer networks. [12] Hydrogel nanoparticles have a promising future in the drug delivery field.
The primary role of many of these polymers was to act as a biocompatible cement in the fixation of prostheses and in the replacement of joints. Newer biologically compatible synthetic and natural biodegradable polymers have been developed; these include polyglycolide, polylactide, polyhydroxobutyrate, chitosan, hyaluronic acid, and hydrogels.
The hydrogels can then be treated with a polymer solution or by surface modification and then are hot-pressed at 80 °C. The result is bulk material with excellent machinability. “The ultrafine nanofiber network structure in CNFP results in more extensive hydrogen bonding, the high in-plane orientation, and “three way branching points” of ...