Search results
Results from the WOW.Com Content Network
Some loops can be shown to always terminate or never terminate through human inspection. For example, the following loop will, in theory, never stop. However, it may halt when executed on a physical machine due to arithmetic overflow : either leading to an exception or causing the counter to wrap to a negative value and enabling the loop ...
For example, in this same example, if it is required to clear the rest of each array entry to nulls immediately after the 100 byte field copied, an additional clear instruction, XC xx*256+100(156,R1),xx*256+100(R2), can be added immediately after every MVC in the sequence (where xx matches the value in the MVC above it).
On some systems, this loop will execute ten times as expected, but on other systems it will never terminate. The problem is that the loop terminating condition (x != 1.1) tests for exact equality of two floating point values, and the way floating point values are represented in many computers will make this test fail, because they cannot ...
The condition/expression is evaluated, and if the condition/expression is true, [1] the code within all of their following in the block is executed. This repeats until the condition/expression becomes false. Because the while loop checks the condition/expression before the block is executed, the control structure is often also known as a pre ...
The test for i < len is still present, but it has been moved outside the loop, which now contains only a single test (for the value), and is guaranteed to terminate due to the sentinel value. There is a single check on termination if the sentinel value has been hit, which replaces a test for each iteration.
The loop counter is used to decide when the loop should terminate and for the program flow to continue to the next instruction after the loop. A common identifier naming convention is for the loop counter to use the variable names i , j , and k (and so on if needed), where i would be the most outer loop, j the next inner loop, etc.
Do while loops check the condition after the block of code is executed. This control structure can be known as a post-test loop. This means the do-while loop is an exit-condition loop. However a while loop will test the condition before the code within the block is executed.
The loop invariant is defined inductively through two where clauses, each of which corresponds to a clause in the postcondition. The fundamental difference is that each clause of the loop invariant identifies the result as being correct up to the current element i, whilst the postconditions identify the result as being correct for all elements.