Search results
Results from the WOW.Com Content Network
K decays with a half-life of 1.248×10 9 years. 89% of those decays are to stable 40 Ca by beta decay , whilst 11% are to 40 Ar by either electron capture or positron emission .
K (0.0117%), 41 K (6.7302%). 39 K and 41 K are stable. The 40 K isotope is radioactive; it decays with a half-life of 1.248 × 10 9 years to 40 Ca and 40 Ar. Conversion to stable 40 Ca occurs via electron emission in 89.3% of decay events. Conversion to stable 40 Ar occurs via electron capture in the remaining 10.7% of decay events. [3]
K decay leads to significantly greater 40 Ca enrichment than any other isotope. [8] The decay constant for the decay to 40 Ca is denoted as λ β and equals 4.962 × 10 −10 yr −1; the decay constant to 40 Ar is denoted as λ EC and equals 5.81 × 10 −11 yr −1. The general equation for the decay time of a radioactive nucleus that decays ...
Symbolically, this process can be expressed by the following differential equation, where N is the quantity and λ is a positive rate called the exponential decay constant, disintegration constant, [1] rate constant, [2] or transformation constant: [3]
In all of the above examples, the initial nuclide decays into just one product. [37] Consider the case of one initial nuclide that can decay into either of two products, that is A → B and A → C in parallel. For example, in a sample of potassium-40, 89.3% of the nuclei decay to calcium-40 and 10.7% to argon-40. We have for all time t:
Get the latest news, politics, sports, and weather updates on AOL.com.
In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [ 1 ] and the analytical solution was provided by Harry Bateman in 1910.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!