Search results
Results from the WOW.Com Content Network
The general structure of a boronic acid, where R is a substituent. A boronic acid is an organic compound related to boric acid (B(OH) 3) in which one of the three hydroxyl groups (−OH) is replaced by an alkyl or aryl group (represented by R in the general formula R−B(OH) 2). [1]
Pyrimidine (C 4 H 4 N 2; / p ɪ ˈ r ɪ. m ɪ ˌ d iː n, p aɪ ˈ r ɪ. m ɪ ˌ d iː n /) is an aromatic, heterocyclic, organic compound similar to pyridine (C 5 H 5 N). [3] One of the three diazines (six-membered heterocyclics with two nitrogen atoms in the ring), it has nitrogen atoms at positions 1 and 3 in the ring.
Boronic acids and esters are classified depending on the type of carbon group (R) directly bonded to boron, for example alkyl-, alkenyl-, alkynyl-, and aryl-boronic esters. The most common type of starting materials that incorporate boronic esters into organic compounds for transition metal catalyzed borylation reactions have the general ...
Borinic acid, also known as boronous acid, is an oxyacid of boron with formula H 2 BOH. Borinate is the associated anion of borinic acid with formula H 2 BO −; however, being a Lewis acid, the form in basic solution is H 2 B(OH) − 2. Borinic acid can be formed as the first step in the hydrolysis of diborane: [1] BH 3 + H 2 O → H 2 BOH + H 2
Ball-and-stick models showing the structures of the boron skeletons of borane clusters. The structures can be rationalised by polyhedral skeletal electron pair theory. [3] Boranes are chemical compounds of boron and hydrogen, with the generic formula of B x H y. These compounds do not occur in nature.
Structure of a rare monomeric boron hydride, R = i-Pr. [4] The most-studied class of organoboron compounds has the formula BR n H 3−n. These compounds are catalysts, reagents, and synthetic intermediates. The trialkyl and triaryl derivatives feature a trigonal-planar boron center that is typically only weakly Lewis acidic.
Solvent exchange is generally slower for trivalent than for divalent ions, as the higher electrical charge on the cation makes for stronger M-OH 2 bonds and, in consequence, higher activation energy for the dissociative reaction step, [M(H 2 O) n] 3+ → [M(H 2 O) n-1] 3+ + H 2 O. The values in the table show that this is due to both activation ...
As pyridine is often used as an organic base in chemical reactions, pyridinium salts are produced in many acid-base reactions. Its salts are often insoluble in the organic solvent, so precipitation of the pyridinium leaving group complex is an indication of the progress of the reaction.