enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body. There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles. These 12 ...

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Thus we can build an n × n rotation matrix by starting with a 2 × 2 matrix, aiming its fixed axis on S 2 (the ordinary sphere in three-dimensional space), aiming the resulting rotation on S 3, and so on up through S n−1. A point on S n can be selected using n numbers, so we again have ⁠ 1 / 2 ⁠ n(n − 1) numbers to describe any n × n ...

  4. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    In a manner analogous to the way lines in a two-dimensional space are described using a point-slope form for their equations, planes in a three dimensional space have a natural description using a point in the plane and a vector orthogonal to it (the normal vector) to indicate its "inclination".

  5. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space.

  6. Rotation around a fixed axis - Wikipedia

    en.wikipedia.org/wiki/Rotation_around_a_fixed_axis

    Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space.This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession.

  7. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    He also proposed the intersection of two planes: the symmetry plane of the angle ∠αAa (which passes through the center C of the sphere), and; the symmetry plane of the arc Aa (which also passes through C). Proposition. These two planes intersect in a diameter. This diameter is the one we are looking for. Proof.

  8. Motion (geometry) - Wikipedia

    en.wikipedia.org/wiki/Motion_(geometry)

    There is a plane A, a line g, and a point P such that P is on g and g is on A then there exist four motions mapping A, g and P onto themselves, respectively, and not more than two of these motions may have every point of g as a fixed point, while there is one of them (i.e. the identity) for which every point of A is fixed. There exists three ...

  9. Shear mapping - Wikipedia

    en.wikipedia.org/wiki/Shear_mapping

    In 3D space this matrix shear the YZ plane into the diagonal plane passing through these 3 points: (,,) (,,) (,,) = (). The determinant will always be 1, as no matter where the shear element is placed, it will be a member of a skew-diagonal that also contains zero elements (as all skew-diagonals have length at least two) hence its product will ...