enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero liquid discharge - Wikipedia

    en.wikipedia.org/wiki/Zero_Liquid_Discharge

    A Zero Liquid Discharge (ZLD) process diagram that highlights how wastewater from an industrial process is converted to solids and treated water for reuse via a ZLD plant. Concept of ZLD Zero Liquid Discharge (ZLD) is a classification of water treatment processes intended to reduce wastewater efficiently and produce clean water that is suitable ...

  3. Low-temperature distillation - Wikipedia

    en.wikipedia.org/wiki/Low-temperature_distillation

    Direct spray distillation is a water treatment process applied in seawater desalination and industrial wastewater treatment, brine and concentrate treatment as well as zero liquid discharge systems. It is a physical water separation process driven by thermal energy. Direct spray distillation involves evaporation and condensation on water ...

  4. Industrial wastewater treatment - Wikipedia

    en.wikipedia.org/wiki/Industrial_wastewater...

    In the recent years, there has been greater prevalence in brine management due to global push for zero liquid discharge (ZLD)/minimal liquid discharge (MLD). [48] In ZLD/MLD techniques, a closed water cycle is used to minimize water discharges from a system for water reuse. This concept has been gaining traction in recent years, due to ...

  5. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

  6. Molecular diffusion - Wikipedia

    en.wikipedia.org/wiki/Molecular_diffusion

    Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles.

  7. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    The change in pressure over distance dx is dp and flow velocity v = ⁠ dx / dt ⁠. Apply Newton's second law of motion (force = mass × acceleration) and recognizing that the effective force on the parcel of fluid is −A dp. If the pressure decreases along the length of the pipe, dp is negative but the force resulting in flow is positive ...

  8. Torricelli's law - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_law

    For low viscosity liquids (such as water) flowing out of a round hole in a tank, the discharge coefficient is in the order of 0.65. [4] By discharging through a round tube or hose, the coefficient of discharge can be increased to over 0.9. For rectangular openings, the discharge coefficient can be up to 0.67, depending on the height-width ratio.

  9. Incompressible flow - Wikipedia

    en.wikipedia.org/wiki/Incompressible_flow

    A change in the density over time would imply that the fluid had either compressed or expanded (or that the mass contained in our constant volume, dV, had changed), which we have prohibited. We must then require that the material derivative of the density vanishes, and equivalently (for non-zero density) so must the divergence of the flow velocity: