enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    The zeroeth extrapolation, R(n, 0), is equivalent to the trapezoidal rule with 2 n + 1 points; the first extrapolation, R(n, 1), is equivalent to Simpson's rule with 2 n + 1 points. The second extrapolation, R(n, 2), is equivalent to Boole's rule with 2 n + 1 points. The further extrapolations differ from Newton-Cotes formulas.

  3. Extrapolation - Wikipedia

    en.wikipedia.org/wiki/Extrapolation

    A sound choice of which extrapolation method to apply relies on a priori knowledge of the process that created the existing data points. Some experts have proposed the use of causal forces in the evaluation of extrapolation methods. [2] Crucial questions are, for example, if the data can be assumed to be continuous, smooth, possibly periodic, etc.

  4. Bulirsch–Stoer algorithm - Wikipedia

    en.wikipedia.org/wiki/Bulirsch–Stoer_algorithm

    In numerical analysis, the Bulirsch–Stoer algorithm is a method for the numerical solution of ordinary differential equations which combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-type applications, and the modified midpoint method, [1] to obtain numerical solutions to ordinary ...

  5. Adaptive quadrature - Wikipedia

    en.wikipedia.org/wiki/Adaptive_quadrature

    Otherwise one can use a "null rule" which has the form of the above quadrature rule, but whose value would be zero for a simple integrand (for example, if the integrand were a polynomial of the appropriate degree). See: Richardson extrapolation (see also Romberg's method) Null rules; Epsilon algorithm

  6. Richardson extrapolation - Wikipedia

    en.wikipedia.org/wiki/Richardson_extrapolation

    An example of Richardson extrapolation method in two dimensions. In numerical analysis , Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value A ∗ = lim h → 0 A ( h ) {\displaystyle A^{\ast }=\lim _{h\to 0}A(h)} .

  7. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    In the example above, the hyperbolic tangent activation function (hidden layer 2) could be replaced with a sine or cosine function to improve extrapolation. The final part of the script displays the neural network model, the original function, and the sampled data points used for fitting.

  8. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    The following Python code implements the Euler–Maruyama method and uses it to solve the Ornstein–Uhlenbeck process defined by d Y t = θ ⋅ ( μ − Y t ) d t + σ d W t {\displaystyle dY_{t}=\theta \cdot (\mu -Y_{t})\,{\mathrm {d} }t+\sigma \,{\mathrm {d} }W_{t}}

  9. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    Example C++ code for several 1D, 2D and 3D spline interpolations (including Catmull-Rom splines). Multi-dimensional Hermite Interpolation and Approximation, Prof. Chandrajit Bajaja, Purdue University; Python library containing 3D and 4D spline interpolation methods.