Search results
Results from the WOW.Com Content Network
A relation that is functional and total. For example, the red and green relations in the diagram are functions, but the blue and black ones are not. An injection [d] A function that is injective. For example, the green relation in the diagram is an injection, but the red, blue and black ones are not. A surjection [d] A function that is surjective.
For example, the relation + + = defines y as an implicit function of x, called the Bring radical, which has as domain and range. The Bring radical cannot be expressed in terms of the four arithmetic operations and n th roots .
For example, the red and green binary relations in the diagram are functions, but the blue and black ones are not. An injection: a function that is injective. For example, the green relation in the diagram is an injection, but the red one is not; the black and the blue relation is not even a function. A surjection: a function that is surjective ...
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation R ; S from two given binary relations R and S. In the calculus of relations , the composition of relations is called relative multiplication , [ 1 ] and its result is called a relative product .
Ternary (3-ary) relations include, for example, the binary functions, which relate two inputs and the output. All three of the domains of a homogeneous ternary relation are the same set. All three of the domains of a homogeneous ternary relation are the same set.
A relation R is called intransitive if it is not transitive, that is, if xRy and yRz, but not xRz, for some x, y, z. In contrast, a relation R is called antitransitive if xRy and yRz always implies that xRz does not hold. For example, the relation defined by xRy if xy is an even number is intransitive, [13] but not antitransitive. [14]
Considering a function as a special case of a binary relation (namely functional relations), function composition satisfies the definition for relation composition. A small circle R ∘ S has been used for the infix notation of composition of relations , as well as functions.
A function is invertible if and only if its converse relation is a function, in which case the converse relation is the inverse function. The converse relation of a function f : X → Y {\displaystyle f:X\to Y} is the relation f − 1 ⊆ Y × X {\displaystyle f^{-1}\subseteq Y\times X} defined by the graph f − 1 = { ( y , x ) ∈ Y × X : y ...