Search results
Results from the WOW.Com Content Network
A node is a basic unit of a data structure, such as a linked list or tree data structure. Nodes contain data and also may link to other nodes. Links between nodes are often implemented by pointers. In graph theory, the image provides a simplified view of a network, where each of the numbers represents a different node.
A node is a structure which may contain data and connections to other nodes, sometimes called edges or links. Each node in a tree has zero or more child nodes, which are below it in the tree (by convention, trees are drawn with descendants going downwards). A node that has a child is called the child's parent node (or superior).
A data structure known as a hash table.. In computer science, a data structure is a data organization and storage format that is usually chosen for efficient access to data. [1] [2] [3] More precisely, a data structure is a collection of data values, the relationships among them, and the functions or operations that can be applied to the data, [4] i.e., it is an algebraic structure about data.
node := list.firstNode while node not null (do something with node.data) node := node.next The following code inserts a node after an existing node in a singly linked list. The diagram shows how it works. Inserting a node before an existing one cannot be done directly; instead, one must keep track of the previous node and insert a node after it.
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once.
Let T be a node of an ordered tree, and let B denote T's image in the corresponding binary tree. Then B's left child represents T's first child, while the B's right child represents T's next sibling. For example, the ordered tree on the left and the binary tree on the right correspond: An example of converting an n-ary tree to a binary tree
According to Knuth's definition, a B-tree of order m is a tree which satisfies the following properties: [7] Every node has at most m children. Every node, except for the root and the leaves, has at least ⌈m/2⌉ children. The root node has at least two children unless it is a leaf. All leaves appear on the same level.
In computer science, a 2–3–4 tree (also called a 2–4 tree) is a self-balancing data structure that can be used to implement dictionaries. The numbers mean a tree where every node with children (internal node) has either two, three, or four child nodes: a 2-node has one data element, and if internal has two child nodes;