enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Problem solving - Wikipedia

    en.wikipedia.org/wiki/Problem_solving

    Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields.

  3. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  4. Trial and error - Wikipedia

    en.wikipedia.org/wiki/Trial_and_error

    In elementary algebra, when solving equations, it is called guess and check. [citation needed] This approach can be seen as one of the two basic approaches to problem-solving, contrasted with an approach using insight and theory.

  5. Mathematics of Sudoku - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_Sudoku

    The general problem of solving Sudoku puzzles on n 2 ×n 2 grids of n×n blocks is known to be NP-complete. [8] A puzzle can be expressed as a graph coloring problem. [9] The aim is to construct a 9-coloring of a particular graph, given a partial 9-coloring. The Sudoku graph has 81 vertices, one vertex for each cell.

  6. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    Closer to the Collatz problem is the following universally quantified problem: Given g, does the sequence of iterates g k (n) reach 1, for all n > 0? Modifying the condition in this way can make a problem either harder or easier to solve (intuitively, it is harder to justify a positive answer but might be easier to justify a negative one).

  7. Bertrand's ballot theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_ballot_theorem

    Separate the counting sequences according to the first vote. Any sequence that begins with a vote for B must reach a tie at some point, because A eventually wins. For any sequence that begins with A and reaches a tie, reflect the votes up to the point of the first tie (so any A becomes a B, and vice versa) to obtain a sequence that begins with B.

  8. Induction puzzles - Wikipedia

    en.wikipedia.org/wiki/Induction_puzzles

    One strategy for solving this version of the hat problem employs Hamming codes, which are commonly used to detect and correct errors in data transmission. The probability for winning will be much higher than 50%, depending on the number of players in the puzzle configuration: for example, a winning probability of 87.5% for 7 players.

  9. Hermite's problem - Wikipedia

    en.wikipedia.org/wiki/Hermite's_problem

    Hermite's problem is an open problem in mathematics posed by Charles Hermite in 1848. He asked for a way of expressing real numbers as sequences of natural numbers , such that the sequence is eventually periodic precisely when the original number is a cubic irrational .