Search results
Results from the WOW.Com Content Network
The denominator of a Rule of 78s loan is the sum of the integers between 1 and n, inclusive, where n is the number of payments. For a twelve-month loan, the sum of numbers from 1 to 12 is 78 (1 + 2 + 3 + . . . +12 = 78). For a 24-month loan, the denominator is 300. The sum of the numbers from 1 to n is given by the equation n * (n+1) / 2.
For instance, if Goldbach's conjecture is true but unprovable, then the result of rounding the following value, n, up to the next integer cannot be determined: either n =1+10 − k where k is the first even number greater than 4 which is not the sum of two primes, or n =1 if there is no such number. The rounded result is 2 if such a number k ...
The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...
In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula c q ( n ) = ∑ 1 ≤ a ≤ q ( a , q ) = 1 e 2 π i a q n , {\displaystyle c_{q}(n)=\sum _{1\leq a\leq q \atop (a,q)=1}e^{2\pi i{\tfrac {a}{q}}n},}
For the avoidance of ambiguity, zero will always be a valid possible constituent of "sums of two squares", so for example every square of an integer is trivially expressible as the sum of two squares by setting one of them to be zero. 1. The product of two numbers, each of which is a sum of two squares, is itself a sum of two squares.
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
Explicitly this says that any multiset of 2n − 1 integers has a subset of size n the sum of whose elements is a multiple of n, but that the same is not true of multisets of size 2n − 2. (Indeed, the lower bound is easy to see: the multiset containing n − 1 copies of 0 and n − 1 copies of 1 contains no n-subset summing to a multiple of n
Another example is Goldbach's conjecture, which asserts that every even integer greater than 2 is the sum of two prime numbers. Stated in 1742 by Christian Goldbach, it remains unproven despite considerable effort. [19]