Search results
Results from the WOW.Com Content Network
The proof that S(k) is true for all k ≥ 12 can then be achieved by induction on k as follows: Base case: Showing that S(k) holds for k = 12 is simple: take three 4-dollar coins. Induction step: Given that S(k) holds for some value of k ≥ 12 (induction hypothesis), prove that S(k + 1) holds, too. Assume S(k) is true for some arbitrary k ≥ 12.
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...
In mathematics, a law is a formula that is always true within a given context. [1] Laws describe a relationship , between two or more expressions or terms (which may contain variables ), usually using equality or inequality , [ 2 ] or between formulas themselves, for instance, in mathematical logic .
The Maxwell–Faraday version of Faraday's law of induction describes how a time-varying magnetic field corresponds to curl of an electric field. [3] In integral form, it states that the work per unit charge required to move a charge around a closed loop equals the rate of change of the magnetic flux through the enclosed surface.
In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved that establishes that any arbitrary case implies the next case. Since in principle the induction rule can be applied repeatedly (starting from the proved base case), it follows that all (usually infinitely many) cases are provable. [15]
The induction, bounding and least number principles are commonly used in reverse mathematics and second-order arithmetic. For example, I Σ 1 {\displaystyle {\mathsf {I}}\Sigma _{1}} is part of the definition of the subsystem R C A 0 {\displaystyle {\mathsf {RCA}}_{0}} of second-order arithmetic.
This page will attempt to list examples in mathematics. To qualify for inclusion, an article should be about a mathematical object with a fair amount of concreteness. Usually a definition of an abstract concept, a theorem, or a proof would not be an "example" as the term should be understood here (an elegant proof of an isolated but particularly striking fact, as opposed to a proof of a ...
Aluminium ring moved by electromagnetic induction, thus demonstrating Lenz's law. Experiment showing Lenz's law with two aluminium rings on a scales-like device set up on a pivot so as to freely move in the horizontal plane. One ring is fully enclosed, while the other has an opening, not forming a complete circle.