enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton , [ 1 ] Hamiltonian mechanics replaces (generalized) velocities q ˙ i {\displaystyle {\dot {q}}^{i}} used in Lagrangian mechanics with (generalized) momenta .

  3. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  4. Action-angle coordinates - Wikipedia

    en.wikipedia.org/wiki/Action-angle_coordinates

    Action-angle coordinates are also useful in perturbation theory of Hamiltonian mechanics, especially in determining adiabatic invariants. One of the earliest results from chaos theory , for dynamical stability of integrable dynamical systems under small perturbations, is the KAM theorem , which states that the invariant tori are partially stable.

  5. Liouville's theorem (Hamiltonian) - Wikipedia

    en.wikipedia.org/wiki/Liouville's_theorem...

    In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics.It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time.

  6. Poisson bracket - Wikipedia

    en.wikipedia.org/wiki/Poisson_bracket

    In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system.

  7. Hamilton–Jacobi equation - Wikipedia

    en.wikipedia.org/wiki/Hamilton–Jacobi_equation

    In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

  8. Hamiltonian field theory - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_field_theory

    The Hamiltonian for a system of discrete particles is a function of their generalized coordinates and conjugate momenta, and possibly, time. For continua and fields, Hamiltonian mechanics is unsuitable but can be extended by considering a large number of point masses, and taking the continuous limit, that is, infinitely many particles forming a continuum or field.

  9. Classical mechanics - Wikipedia

    en.wikipedia.org/wiki/Classical_mechanics

    Classical mechanics was traditionally divided into three main branches. Statics is the branch of classical mechanics that is concerned with the analysis of force and torque acting on a physical system that does not experience an acceleration, but rather is in equilibrium with its environment. [3]