Search results
Results from the WOW.Com Content Network
in the condensation of the water-vapour of the air on the cold surface of a glass; in the capillarity of hair, wool, cotton, wood shavings, etc.; in the imbibition of water from the air by gelatine; in the deliquescence of common salt; in the absorption of water from the air by concentrated sulphuric acid; in the behaviour of quicklime". [4]
This gradient of water potential causes endosmosis. The endosmosis of water continues until the water potential both in the root and soil becomes equal. It is the absorption of minerals that utilise metabolic energy, but not water absorption. Hence, the absorption of water is indirectly an active process in a plant's life.
The result of the Cromer cycle is that the process air leaving the cycle is dehumidified further (higher latent ratio) than it would be leaving the cold surface without the cycle. The Cromer cycle concept was originally patented in the mid-1980's. Those patents have expired and thus the cycle is free for anyone to use.
The relationship between water content and equilibrium relative humidity of a material can be displayed graphically by a curve, the so-called moisture sorption isotherm. For each humidity value, a sorption isotherm indicates the corresponding water content value at a given temperature. If the composition or quality of the material changes, then ...
The absorption cycle is the one limiting the choice of the refrigerant. The most common refrigerants for absorption systems are ammonia and water. [13] Both are good for combined absorption-compression heat pumps. [14] [15] Ammonia has an exceptionally good solubility in water. This is an important aspect that increases the performance and ...
The absorption of electromagnetic radiation by water depends on the state of the water. The absorption in the gas phase occurs in three regions of the spectrum. Rotational transitions are responsible for absorption in the microwave and far-infrared , vibrational transitions in the mid-infrared and near-infrared .
Water moves in soil under the influence of gravity, osmosis and capillarity. [7] When water enters the soil, it displaces air from interconnected macropores by buoyancy, and breaks aggregates into which air is entrapped, a process called slaking. [8] The rate at which a soil can absorb water depends on the soil and its other conditions.
Transpiration: the movement of water from root systems, through a plant, and exit into the air as water vapor. This exit occurs through stomata in the plant. Rate of transpiration can be influenced by factors including plant type, soil type, weather conditions and water content, and also cultivation practices. [ 6 ] :