enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  3. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...

  4. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression , which predicts multiple correlated dependent variables rather than a single dependent variable.

  5. Linear predictor function - Wikipedia

    en.wikipedia.org/wiki/Linear_predictor_function

    An example is polynomial regression, which uses a linear predictor function to fit an arbitrary degree polynomial relationship (up to a given order) between two sets of data points (i.e. a single real-valued explanatory variable and a related real-valued dependent variable), by adding multiple explanatory variables corresponding to various ...

  6. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix contains data on the independent variables (also called explanatory variables), in a statistical model that is intended to explain observed data on a response variable (often called a dependent variable). The theory relating to such models uses the design matrix as input to some linear algebra : see for example linear regression.

  7. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  8. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    Statistical packages implement the ARMAX model through the use of "exogenous" (that is, independent) variables. Care must be taken when interpreting the output of those packages, because the estimated parameters usually (for example, in R [15] and gretl) refer to the regression:

  9. Nonlinear regression - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_regression

    In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).