enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    A* is an informed search algorithm, or a best-first search, meaning that it is formulated in terms of weighted graphs: starting from a specific starting node of a graph, it aims to find a path to the given goal node having the smallest cost (least distance travelled, shortest time, etc.).

  3. Best-first search - Wikipedia

    en.wikipedia.org/wiki/Best-first_search

    Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...

  4. Python (programming language) - Wikipedia

    en.wikipedia.org/wiki/Python_(programming_language)

    Guido van Rossum began working on Python in the late 1980s as a successor to the ABC programming language and first released it in 1991 as Python 0.9.0. [36] Python 2.0 was released in 2000. Python 3.0, released in 2008, was a major revision not completely backward-compatible with earlier versions.

  5. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Beam stack search: integrates backtracking with beam search; Best-first search: traverses a graph in the order of likely importance using a priority queue; Bidirectional search: find the shortest path from an initial vertex to a goal vertex in a directed graph; Breadth-first search: traverses a graph level by level

  6. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...

  7. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    A stack (LIFO queue) will yield a depth-first algorithm. A best-first branch and bound algorithm can be obtained by using a priority queue that sorts nodes on their lower bound. [3] Examples of best-first search algorithms with this premise are Dijkstra's algorithm and its descendant A* search. The depth-first variant is recommended when no ...

  8. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    Input: A graph G and a starting vertex root of G. Output: Goal state.The parent links trace the shortest path back to root [9]. 1 procedure BFS(G, root) is 2 let Q be a queue 3 label root as explored 4 Q.enqueue(root) 5 while Q is not empty do 6 v := Q.dequeue() 7 if v is the goal then 8 return v 9 for all edges from v to w in G.adjacentEdges(v) do 10 if w is not labeled as explored then 11 ...

  9. Sudoku solving algorithms - Wikipedia

    en.wikipedia.org/wiki/Sudoku_solving_algorithms

    Some hobbyists have developed computer programs that will solve Sudoku puzzles using a backtracking algorithm, which is a type of brute force search. [3] Backtracking is a depth-first search (in contrast to a breadth-first search), because it will completely explore one branch to a possible solution before moving to another branch.