Search results
Results from the WOW.Com Content Network
This idea is motivated by the fact that some binary patterns occur more commonly in texture images than others. A local binary pattern is called uniform if the binary pattern contains at most two 0-1 or 1-0 transitions. For example, 00010000 (2 transitions) is a uniform pattern, but 01010100 (6 transitions) is not.
The network is trained by minimizing the euclidean distance between the image and the output of a CNN that reconstructs the input from the output of the terminal capsules. [1] The network is discriminatively trained, using iterative routing-by-agreement. [1] The activity vectors of all but the correct parent are masked. [1]
Using the language of graphical models, the Naive Bayes classifier is described by the equation below. The basic idea (or assumption) of this model is that each category has its own distribution over the codebooks, and that the distributions of each category are observably different. Take a face category and a car category for an example.
A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]
In the original Chua-Yang CNN (CY-CNN) processor, the state of the cell was a weighted sum of the inputs and the output was a piecewise linear function.However, like the original perceptron-based neural networks, the functions it could perform were limited: specifically, it was incapable of modeling non-linear functions, such as XOR.
The Inception Score (IS) is an algorithm used to assess the quality of images created by a generative image model such as a generative adversarial network (GAN). [1] The score is calculated based on the output of a separate, pretrained Inception v3 image classification model applied to a sample of (typically around 30,000) images generated by the generative model.
Above: An image classifier, an example of a neural network trained with a discriminative objective. Below: A text-to-image model, an example of a network trained with a generative objective. Since its inception, the field of machine learning used both discriminative models and generative models, to model and predict data.
As the image illustrated below, if only a small portion of the image is shown, it is very difficult to tell what the image is about. Mouth. Even try another portion of the image, it is still difficult to classify the image. Left eye. However, if we increase the contextual of the image, then it makes more sense to recognize. Increased field of ...