enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss–Markov theorem - Wikipedia

    en.wikipedia.org/wiki/GaussMarkov_theorem

    In statistics, the GaussMarkov theorem (or simply Gauss theorem for some authors) [1] states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. [2]

  3. Gauss–Markov process - Wikipedia

    en.wikipedia.org/wiki/GaussMarkov_process

    GaussMarkov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary GaussMarkov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.

  4. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    The GaussMarkov theorem shows that, when this is so, ^ is a best linear unbiased estimator . If, however, the measurements are uncorrelated but have different uncertainties, a modified approach might be adopted.

  5. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  6. Ornstein–Uhlenbeck process - Wikipedia

    en.wikipedia.org/wiki/Ornstein–Uhlenbeck_process

    The Ornstein–Uhlenbeck process is a stationary GaussMarkov process, which means that it is a Gaussian process, a Markov process, and is temporally homogeneous. In fact, it is the only nontrivial process that satisfies these three conditions, up to allowing linear transformations of the space and time variables. [ 1 ]

  7. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    This transformation effectively standardizes the scale of and de-correlates the errors. When OLS is used on data with homoscedastic errors, the GaussMarkov theorem applies, so the GLS estimate is the best linear unbiased estimator for .

  8. Chapman–Kolmogorov equation - Wikipedia

    en.wikipedia.org/wiki/Chapman–Kolmogorov_equation

    When the probability distribution on the state space of a Markov chain is discrete and the Markov chain is homogeneous, the Chapman–Kolmogorov equations can be expressed in terms of (possibly infinite-dimensional) matrix multiplication, thus: (+) = ()

  9. Markov kernel - Wikipedia

    en.wikipedia.org/wiki/Markov_kernel

    The composition is associative by the Monotone Convergence Theorem and the identity function considered as a Markov kernel (i.e. the delta measure (′ |) = (′)) is the unit for this composition. This composition defines the structure of a category on the measurable spaces with Markov kernels as morphisms, first defined by Lawvere, [ 4 ] the ...