Search results
Results from the WOW.Com Content Network
The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
These lattices are classified by the space group of the lattice itself, viewed as a collection of points; there are 14 Bravais lattices in three dimensions; each belongs to one lattice system only. They [ clarification needed ] represent the maximum symmetry a structure with the given translational symmetry can have.
Bravais lattices, also referred to as space lattices, describe the geometric arrangement of the lattice points, [4] and therefore the translational symmetry of the crystal. The three dimensions of space afford 14 distinct Bravais lattices describing the translational symmetry.
The degree of translation is then added as a subscript showing how far along the axis the translation is, as a portion of the parallel lattice vector. For example, 2 1 is a 180° (twofold) rotation followed by a translation of 1 / 2 of the lattice vector. 3 1 is a 120° (threefold) rotation followed by a translation of 1 / 3 of ...
As a group (dropping its geometric structure) a lattice is a finitely-generated free abelian group, ... The 14 lattice types in 3D are called Bravais lattices.
The letters A, B and C were formerly used instead of S. When the centred face cuts the X axis, the Bravais lattice is called A-centred. In analogy, when the centred face cuts the Y or Z axis, we have B- or C-centring respectively. [5] The fourteen possible Bravais lattices are identified by the first two letters:
For black-white Bravais lattices, the number of black and white sites is always equal. [24] There are 14 traditional Bravais lattices, 14 grey lattices, and 22 black-white Bravais lattices, for a total of 50 two-color lattices in three dimensions. [25]
In either case, there are 3 lattice points per unit cell in total and the lattice is non-primitive. The Bravais lattices in the hexagonal crystal family can also be described by rhombohedral axes. [4] The unit cell is a rhombohedron (which gives the name for the rhombohedral lattice). This is a unit cell with parameters a = b = c; α = β = γ ...