Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
A quantity of dimension one is historically known as a dimensionless quantity (a term that is still commonly used); all its dimensional exponents are zero and its dimension symbol is . Such a quantity can be regarded as a derived quantity in the form of the ratio of two quantities of the same dimension.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Nondimensionalization is the partial or full removal of physical dimensions from an equation involving physical quantities by a suitable substitution of variables.This technique can simplify and parameterize problems where measured units are involved.
The original Standard Model of particle physics from the 1970s contained 19 fundamental dimensionless constants describing the masses of the particles and the strengths of the electroweak and strong forces. In the 1990s, neutrinos were discovered to have nonzero mass, and a quantity called the vacuum angle was found to be indistinguishable from ...
Alternative forms of this number do exist depending on the approach by which Darcy's Law is made dimensionless and the geometry of the system. [2] The Darcy number is commonly used in heat transfer through porous media.