enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]

  3. Heat shock response - Wikipedia

    en.wikipedia.org/wiki/Heat_shock_response

    Heat shock proteins induced by the HSR can help prevent protein aggregation that is associated with common neurodegenerative diseases such as Alzheimer's, Huntington's, or Parkinson's disease. [8] The diagram depicts actions taken when a stress is introduced to the cell. Stress will induce HSF-1 and cause proteins to misfold.

  4. Heat shock protein - Wikipedia

    en.wikipedia.org/wiki/Heat_shock_protein

    Heat shock proteins (HSPs) are a family of proteins produced by cells in response to exposure to stressful conditions. They were first described in relation to heat shock, [1] but are now known to also be expressed during other stresses including exposure to cold, [2] UV light [3] and during wound healing or tissue remodeling. [4]

  5. Temperature-sensitive mutant - Wikipedia

    en.wikipedia.org/wiki/Temperature-sensitive_mutant

    Most temperature-sensitive mutations affect proteins, and cause loss of protein function at the non-permissive temperature. The permissive temperature is one at which the protein typically can fold properly, or remain properly folded. At higher temperatures, the protein is unstable and ceases to function properly.

  6. Cellular stress response - Wikipedia

    en.wikipedia.org/wiki/Cellular_stress_response

    [4] [5] These can help defend a cell against damage by acting as 'chaperons' in protein folding, ensuring that proteins assume their necessary shape and do not become denatured. [6] This role is especially crucial since elevated temperature would, on its own, increase the concentrations of malformed proteins.

  7. Human thermoregulation - Wikipedia

    en.wikipedia.org/wiki/Human_thermoregulation

    Simplified control circuit of human thermoregulation. [8]The core temperature of a human is regulated and stabilized primarily by the hypothalamus, a region of the brain linking the endocrine system to the nervous system, [9] and more specifically by the anterior hypothalamic nucleus and the adjacent preoptic area regions of the hypothalamus.

  8. Thermal shift assay - Wikipedia

    en.wikipedia.org/wiki/Thermal_Shift_Assay

    The system does not require solvatochromic dyes, reducing the risk of interferences. The protein samples are simply mixed with the test conditions in a 96-well plate and subjected to a melt-curve protocol using a real-time thermal cycler. The data are obtained within 1–2 h and include unique quality control measures through the GFP signal.

  9. Uncoupling protein - Wikipedia

    en.wikipedia.org/wiki/Uncoupling_protein

    Elsewhere in the body, uncoupling protein activities are known to affect the temperature in micro-environments. [12] [13] This is believed to affect other proteins' activity in these regions, though work is still required to determine the true consequences of uncoupling-induced temperature gradients within cells. [12]